Tag Archives: C++

Making things do stuff – Part 9

Technical Consultant at Feabhas Ltd
Glennan is an embedded systems and software engineer with over 20 years experience, mostly in high-integrity systems for the defence and aerospace industry.

He specialises in C++, UML, software modelling, Systems Engineering and process development.
Glennan Carnie

As a final instalment in this series on hardware manipulation I thought I’d revisit read-only and write-only register types.

Using tag dispatch is not the only way to solve the read- or write-only Register problem.  For completeness let’s explore two other alternatives – SFINAE and constexpr if.

For these examples I’m going to use a simplified version of our Register class.  I’m ignoring the bit proxy class and using a reduced API.  Once understood, the techniques below can be applied to these […]

Posted in C/C++ Programming, Design Issues | Tagged , , , , , , , , , , | 1 Comment

Making things do stuff – Part 8

Technical Consultant at Feabhas Ltd
Glennan is an embedded systems and software engineer with over 20 years experience, mostly in high-integrity systems for the defence and aerospace industry.

He specialises in C++, UML, software modelling, Systems Engineering and process development.
Glennan Carnie

We’ve been using templates to provide a hardware register abstraction for use with hardware manipulation problems, typical of what you’d find in a deeply-embedded (“bare-metal”) system.

Previously, we looked at using trait classes to establish pointers and tag-dispatch to handle special-case registers, such as read-only or write-only register.

In this article we’re going to add some syntactic sugar to our Register class, to allow the developer to access individual bits in the register using array-index ([]) notation.  This will allow us to […]

Posted in General | Tagged , , , | 2 Comments

Making things do stuff – Part 7

Technical Consultant at Feabhas Ltd
Glennan is an embedded systems and software engineer with over 20 years experience, mostly in high-integrity systems for the defence and aerospace industry.

He specialises in C++, UML, software modelling, Systems Engineering and process development.
Glennan Carnie

In our previous article we explored using templates to build a generic ‘register’ type to allow programmers to access hardware without all the nasty syntax of integer-to-pointer casting, etc.

At the moment, this class gives us little extra functionality beyond cleaning up the syntax (although, in its favour, it also doesn’t incur any additional run-time cost/performance).

In this article we’re going to extend our design to consider special hardware register types – notably read-only and write-only registers – and see how we can […]

Posted in C/C++ Programming | Tagged , , , , , , | 2 Comments

Making things do stuff – Part 6

Technical Consultant at Feabhas Ltd
Glennan is an embedded systems and software engineer with over 20 years experience, mostly in high-integrity systems for the defence and aerospace industry.

He specialises in C++, UML, software modelling, Systems Engineering and process development.
Glennan Carnie

As code designers we tend to eschew specific ‘stove-pipe’ code in favour of reusable code elements.  Up until now we’ve been coding some very specific examples so it’s probably worth looking at some more generic solutions.

In this article we’ll look at building generic register manipulation classes (or, as one commenter referred to them, ‘register proxy’ classes).  Here, we’re really exploring code design rather than coding ‘mechanics’.  I’m using this to explore some factors like the balance between efficiency, performance and […]

Posted in C/C++ Programming | Tagged , , , , , , , | 3 Comments

Making things do stuff – Part 5

Technical Consultant at Feabhas Ltd
Glennan is an embedded systems and software engineer with over 20 years experience, mostly in high-integrity systems for the defence and aerospace industry.

He specialises in C++, UML, software modelling, Systems Engineering and process development.
Glennan Carnie

We’ve been looking at using C++ to manipulate I/O hardware.   Previously, we’ve looked at the fundamentals of hardware manipulation; and how to encapsulate these mechanisms into classes.  If you’ve not been following along I’d recommend reading the previous articles first before continuing.

This time we’ll explore a lesser-known feature of C++ and its application in hardware manipulation – placement

Posted in C/C++ Programming | Tagged , , , , , | 3 Comments

Death and (virtual) destruction*

Technical Consultant at Feabhas Ltd
Glennan is an embedded systems and software engineer with over 20 years experience, mostly in high-integrity systems for the defence and aerospace industry.

He specialises in C++, UML, software modelling, Systems Engineering and process development.
Glennan Carnie

This time, we’ll have a more detailed look at one of those everybody-knows-that elements of C++ – virtual destructors.

More specifically, I want to reinforce under what circumstances you should make your destructor virtual; and when you don’t need to (despite what your compiler might say)

(*there’s no

Posted in C/C++ Programming, Design Issues | Tagged , , , , , , , , | 9 Comments

Getting your head around auto’s type-deduction rules

Technical Consultant at Feabhas Ltd
Glennan is an embedded systems and software engineer with over 20 years experience, mostly in high-integrity systems for the defence and aerospace industry.

He specialises in C++, UML, software modelling, Systems Engineering and process development.
Glennan Carnie

Automatic type-deduction is perhaps one of the more divisive features of Modern C++.  At its core it’s a straightforward concept:  let the compiler deduce the type of an object from its initialiser.   Used in the right way this can improve the readability and maintainability of your code.

However, because auto is based on template type-deduction rules there are some subtleties that can catch the unwary programmer.

In this article we’ll have a look at auto in the context of the template type-deduction […]

Posted in C/C++ Programming | Tagged , , , , , , , , , , | 3 Comments

The three ‘No’s of sequential consistency

Technical Consultant at Feabhas Ltd
Glennan is an embedded systems and software engineer with over 20 years experience, mostly in high-integrity systems for the defence and aerospace industry.

He specialises in C++, UML, software modelling, Systems Engineering and process development.
Glennan Carnie

In the previous article we looked at the memory consistency problem that occurs when writing multi-threaded code for modern multi-processor systems.

In this article is we’ll have a look at how we can solve the sequential consistency problem and restore some sanity to our programming

Posted in ARM, C/C++ Programming, Cortex | Tagged , , , , , , | Leave a comment

Memory consistency made simple(ish)

Technical Consultant at Feabhas Ltd
Glennan is an embedded systems and software engineer with over 20 years experience, mostly in high-integrity systems for the defence and aerospace industry.

He specialises in C++, UML, software modelling, Systems Engineering and process development.
Glennan Carnie

The C++11 memory consistency model is probably one of the most significant aspects of Modern C++; and yet probably one of the least well-understood.  I think the reason is simple:  it’s really difficult to understand what the problem actually is.

The memory consistency problem is a concurrency problem.  That is, it’s a problem that occurs when we start writing multi-threaded code.  More specifically, it’s a parallelism problem – the real subtleties occur when you have two or more processors executing code.

In the first […]

Posted in C/C++ Programming, Design Issues, General | Tagged , , | 2 Comments

Function Parameters and Arguments on 32-bit ARM

Director at Feabhas Limited
Co-Founder and Director of Feabhas since 1995.
Niall has been designing and programming embedded systems for over 30 years. He has worked in different sectors, including aerospace, telecomms, government and banking.
His current interest lie in IoT Security and Agile for Embedded Systems.
Niall Cooling

Function call basics

When teaching classes about embedded C  or embedded C++ programming, one of the topics we always address is “Where does the memory come from for function arguments?“

Take the following simple C function:

void test_function(int a, int b, int c, int d);

when we invoke the function, where are the function arguments stored?

int main(void)
{
  //…
  test_function(1,2,3,4);
  //…
}

Unsurprisingly, the most common answer after “I don’t know” is “the stack“; and of course if you were compiling for x86 this would […]

Posted in ARM, C/C++ Programming, Cortex | Tagged , , | 5 Comments