Tag Archives: Modern C++

Bitesize Modern C++: enum class

Glennan Carnie

Glennan Carnie

Technical Consultant at Feabhas Ltd
Glennan is an embedded systems and software engineer with over 20 years experience, mostly in high-integrity systems for the defence and aerospace industry.

He specialises in C++, UML, software modelling, Systems Engineering and process development.
Glennan Carnie

Latest posts by Glennan Carnie (see all)

Enumerated types in C++ give a trivial simulation of symbolic types – that is, objects whose instances have unique, human-readable values. In C++ enumerations are essentially named integers that are either assigned values implicitly by the compiler or explicitly by the programmer (or a combination of both)

C++ enum types inherit their semantics from C with some additions:

enum objects are now first-class types
enums may be implicitly converted to integers; but the reverse is not true

Another characteristic illustrated in the […]

Posted in C/C++ Programming | Tagged , , , , , , | 1 Comment

Bitesize Modern C++ : static_assert

Glennan Carnie

Glennan Carnie

Technical Consultant at Feabhas Ltd
Glennan is an embedded systems and software engineer with over 20 years experience, mostly in high-integrity systems for the defence and aerospace industry.

He specialises in C++, UML, software modelling, Systems Engineering and process development.
Glennan Carnie

Latest posts by Glennan Carnie (see all)

C’s assert library is a useful tool for catching invalid invariants (conditions that must hold true in order for your system to operate as specified) in your program. The big problem with assert is that it’s a run-time check; in many cases the best you can do  to recover from an assert failure is restart the system or put it into a quiescent state.

In a lot of cases the (faulty) invariants could be detected at compile-time but in C++98 there […]

Posted in C/C++ Programming | Tagged , , , , , | 2 Comments

Bitesize Modern C++ : constexpr

Glennan Carnie

Glennan Carnie

Technical Consultant at Feabhas Ltd
Glennan is an embedded systems and software engineer with over 20 years experience, mostly in high-integrity systems for the defence and aerospace industry.

He specialises in C++, UML, software modelling, Systems Engineering and process development.
Glennan Carnie

Latest posts by Glennan Carnie (see all)

A constant expression is an expression that can be evaluated at compile-time. The const qualifier gives a weak guarantee of a constant expression – a const-qualified type may not be changed after initialisation but that does not guarantee it will be initialised at compile-time. For example:

C++11 introduces a strong form of constant expression, constexpr, which also expands the capabilities of compile-time evaluation.

constexpr objects

A constexpr variable is essentially the same as qualifying the type as const with the additional requirement that […]

Posted in C/C++ Programming | Tagged , , , , , | Leave a comment

Bitesize Modern C++ : auto

Glennan Carnie

Glennan Carnie

Technical Consultant at Feabhas Ltd
Glennan is an embedded systems and software engineer with over 20 years experience, mostly in high-integrity systems for the defence and aerospace industry.

He specialises in C++, UML, software modelling, Systems Engineering and process development.
Glennan Carnie

Latest posts by Glennan Carnie (see all)

C++ is a statically-typed language, that is, you must explicitly declare the type of every object before use. The type of an object specifies

The amount of memory occupied
How the memory (bits) is interpreted
The operations allowable on the object

An object’s type is fixed at declaration – unless the programmer chooses to circumvent the type system using a cast.

Often for C++ objects specifying the type can be onerous:

C++11 allows automatic type-deduction to simplify the creation and maintenance of code.

The […]

Posted in C/C++ Programming | Tagged , , , , | 6 Comments