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Bitesize Modern C++ 

 

Introduction 

The C++11 standard marked a fundamental change to the C++ 

language. A range of new language constructs and library 

features were added and, as a result, new idioms were 

developed. Bjarne Stroustrup, originator of C++, referred to it as 

“feeling like a completely new language”. 

In 2014 a revision of the standard was released with 

refinements to C++11 features and some new constructs, designed to improve the usability of the 

language; another revision is planned for 2017. 

Traditionally, C++ programmers refer to their language version by the standard release year (so, 

C++98, C++03) but, as C++11 marked such a fundamental shift in the programming style of C++ (and as 

revisions are coming out more frequently) people are starting to refer to C++ post-2011 as 'Modern 

C++' 

In the embedded world Modern C++ has had comparatively little take-up, possibly due to a lack of 

embedded compiler support.  Slowly, though, this is beginning to change. 

There is a huge amount of material available on Modern C++. It has been explored, examined and 

dissected by experts for nearly five year. However, for the C++ programmer just starting to transition 

to Modern C++ a lot of this material can be somewhat overwhelming.  For many it can be difficult to 

find a simple place just to start. 

And that's the idea behind these articles. 

We wanted to present simple introductions to the new features in Modern C+; ones that are useful 

for programmers currently using C++98. These are not the big, headline features - lambda 

expressions, move semantics, etc. - but the 'little' additions that can make you more productive and 

your programs to be more elegant and maintainable. 

The other thing we wanted to avoid was TMI – Too Much Information. These articles are not meant to 

be definitive; they don't explore every last quirk and corner-case. You won't be an expert after reading 

these articles. Their purpose is simply to get you started; to give you a jumping-off place for all the 

excellent, detailed information out there. 

Enjoy! 
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Automatic type deduction 

C++ is a statically-typed language, that is, you must explicitly declare the type of every object before 

use.  The type of an object  specifies: 

 The amount of memory occupied 

 How the memory (bits) is interpreted 

 The operations allowable on the object 

An object’s type is fixed at declaration – unless the programmer chooses to circumvent the type 

system using a cast. 

Often for C++ objects specifying the type can be  onerous: 

namespace lib 
{ 
  class UserDefinedType{}; 
} 

 

int main() 
{ 
  std::vector<lib::UserDefinedType> container; 
  std::vector<lib::UserDefinedType>::const_iterator it =  
                                           container.cbegin(); // Phew... 
... 
} 

 
 

C++11 allows automatic type-deduction to simplify the creation and maintenance of code. 

The auto keyword has been appropriated from C (where it was a storage specifier indicating a local – 

‘automatic’ – variable) that is almost never used.  In C++11 auto now means ‘deduce the type of an 

object’ 

Let’s start with some simple (but not particularly useful) examples. 

int func() 
{ 
  return 0; 
} 
 
 

int main() 
{ 
  auto a = 0;           // a => int 
  auto b = 'a';         // b => char 
  auto c = 0.5;         // c => double 
  auto d = func();      // d => int (return type from func()) 
} 

 
The compiler uses the type of the initialiser to establish the type of the new object. Note, the object 

still has a definitive (and fixed) type. Type-deduction does not lead to ‘duck typing’. 

(One might reasonably argue that there is very little benefit in auto-deducing built-in types) 
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To use auto the compiler must have the information to deduce the type (and therefore allocate 

memory). Therefore, there are some (obvious?) limitations: 

void invalid(auto i)   // ERROR - can't use auto 
{                    // for function parameters 
} 
 
 
class A 
{ 
  auto m;             // ERROR - invalid for 
};                    // member variables 
 
 
int main() 
{ 
  auto arr[10];       // ERROR - invalid for arrays 
} 

 
 

The mechanism used by the compiler for type-deduction is the same one used to deduce parameter 

types for template functions. Because of this, the object-type deduced for an auto object may not be 

exactly what the programmer expects. 

The rules are as follows: 

 The deduced type will be a new object. 

 If the initialiser is a reference-to-object, the reference is ignored (since a reference is just an 

alias for an object). 

 Any const-volatile (cv)-qualifiers on the initialiser are ignored (since the cv-qualifiers are a 

property of the initialiser, not the new object). 

 Arrays are degenerated into pointer types. 

 
const int  c = 100;  
const int& c_ref = c;  
int         array[100]; 
 
auto i = c;               // i => int  (cv-qualifiers ignored)  
auto j = c_ref;           // j => int  (reference ignored)  
auto k = array;           // k => int* (array degeneration) 
 

 

We can cv-qualify the deduced type separately, if required. The cv-qualifiers are applied to the new 

object. 

const auto l = c;        // l => int (then cv-qualified)  
const auto m = array;    // m => int* const (ptr is const) 

 
 

If we reference-qualify the auto-deduced type the rules change: 

 The deduced type will now be a reference the initialiser object. 

 The cv-qualifiers of the initialiser will be maintained on the deduced type (since you cannot 

have a non-const reference to a const object). 

 If the initialiser is an array the deduced type is a reference-to-array type, not a pointer. 
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auto& n = c;          // n => const int&  
auto& o = c-ref;      // o => const int&  
auto& p = array;      // p => int(&)[100] 
 

 

Returning to our original example, we can simplify the code (considerably) with the use of auto. 

namespace lib 
{ 
  class UserDefinedType {}; 
} 
 
 

int main() 
{ 
  std::vector<lib::UserDefinedType> container; 
 

  auto it = container.cbegin(); // Much simpler! 
  ... 
} 

 

Additionally, the use of auto allows us a degree of flexibility in our code for future modifications: 

namespace lib 
{ 
class UserDefinedType {}; 
} 
 
 

int main() 
{ 
  std::list<lib::UserDefinedType> container; // <= new container... 
 

  auto it = container.cbegin();              // ...but no change here 
  ... 
} 
 
 

Back to Contents
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Constant expressions 

A constant expression is an expression that can be evaluated at compile-time. The const qualifier 

gives a weak guarantee of a constant expression – a const-qualified type may not be changed after 

initialisation but that does not guarantee it will be initialised at compile- time.  For example: 

int main() 
{ 
  int size = 10; 
 
  ... 
 

  const int sz = size;         // Non-modifiable, but run-time initialized 
  double array[sz];        // FAIL! 
} 

 

C++11 introduces a strong form of constant expression, constexpr, which also expands the 

capabilities of compile-time evaluation. 

constexpr objects 
A constexpr variable is essentially the same as qualifying the type as const with the additional 

requirement that its initialiser(s) must be known at compile-time. Any object type that could be 

made const can be made a constexpr object. As expected, the object must be initialised on 

definition. Note that literals are, by definition, constant expressions. 

int main() 
{ 
  int sz; 
  constexpr int array_sz1 = 100;  // OK, 100 is a literal  

  constexpr int array_sz2 = sz;   // FAIL – sz is not a constexpr 
 

  double array[array_sz1];        // OK – array_sz1 known at compile-time 
} 

 

Since constexpr  types have their value known at compile-time they can be placed in read- only 

memory; and, for built-in types (and provided you don’t take their address) the compiler doesn’t even 

have to store the object. We’ll look at user-defined types in a moment. 

constexpr functions 
So far, so what? 

The real power of constant expressions comes from the fact that not only objects but functions may 

be qualified as constexpr. 

A constexpr   function is one that may be evaluated at compile-time; and hence used in the definition 

of other constant expressions: 
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constexpr int getval() 
{ 
  return 100; 
} 
 

constexpr int calc(int val) 
{ 
  return val * getval();  // Calls another constexpr function 
} 
 
 

int main() 
{ 

  double array[calc(2)];  // OK – calc() is a constexpr 
  ... 
} 

 
 

Of course, there are some limitations with constexpr functions: 

 They must have exactly one return statement 

 They cannot have local variables 

 They cannot have conditional expressions 

 They cannot throw exceptions 

 They cannot include a goto  statement 

 All parameters must be (capable of being) constexpr  objects 

Put simply, in order to be a constexpr function everything the function needs to be computed must 

be known at compile-time. Making a function a constant expression implies it is inline. 

(Note: C++14 relaxes some of these requirements with respect to local variables and  conditionals). 

Marking a function as a constexpr doesn’t limit it to only be usable at compile-time. They may still be 

used at run time: 

int main() 
{ 
  int a = 10;       // Non-constexpr object 
  int b = calc(a);  // Evaluated at run-time 
} 

 

ROM-able types 
The use of constexpr for functions extends to member functions, too. Marking a member function as 

a constexpr implicitly makes it a const function, meaning it cannot change any of the attributes of 

the class. 

This is also true of constructors. Making a class’s constructor a constexpr allows objects of that type 

to themselves be constexpr objects. 
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class Rommable 
{ 
public: 
  constexpr Rommable(int val) : data { val } { }  
  constexpr int get() { return data; } 
 
private:  
  int data; 
}; 
 
 
int main() 
{ 
  constexpr Rommable romObject{ calc(100) }; // ctor is constexpr 
 

  int val = romObject.get();                // Read-only function 
} 
 

 

Since everything required to construct the Rommable object is known at compile-time it can be 

constructed in read-only memory. 

In order to be truly ROM-able there are some additional requirements we must satisfy (over and above 

the requirements for a constexpr function): 

 The class cannot have any virtual functions (virtual functions cannot be constant expressions) 

 The class cannot have a virtual base class 

 All base classes and all const members must be initialised by the constructor 

 

 
Back to Contents
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static_assert 

C’s assert library is a useful tool for catching invalid invariants (conditions that must hold true in order 

for your system to operate as specified) in your program. The big problem with assert is that it’s a 

run-time check; in many cases the best you can do is restart the system or put it into a quiescent  state. 

In a lot of cases the (faulty) invariants could be detected at compile-time but in C++98 there was no 

mechanism for doing so. The pre-processor has an assert-like mechanism - #error – but the pre-

processor has no knowledge of your C++ code so it cannot evaluate program invariants. 

In C++11 a compile-time assert mechanism was added: static_assert. static_assert acts like 

run-time assert except that the checked-condition must be a constant-expression (that is, an 

expression that can be evaluated at compile-time); the checked-condition must be a Boolean 

expression, or an expression that can be converted to a boolean. 

constexpr int calc(const int val) 
{ 
  return val * sizeof(int); 
} 
 
 

int main() 
{ 
  constexpr int sz = calc(20); 
  static_assert(sz < 10, "Array size is too big"); 
 
  ... 
 

  double array[sz];   // We know we're OK here... 
} 
 
 

Back to Contents
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enum class 

Enumerated types in C++ give a trivial simulation of symbolic types – that is, objects whose instances 

have unique, human-readable values. In C++ enumerations are essentially named integers that are 

either assigned values implicitly by the compiler or explicitly by the programmer (or a combination of 

both) C++ enum types inherit their semantics from C with some additions: 

 enum objects are now first-class types 

 enums may be implicitly converted to integers; but the reverse is not true 

 

 
enum Colour { RED, GOLD, GREEN, BLUE };  // No typedef required 
enum Metal  { GOLD, SILVER, BRONZE };    // Oops re-definition of GOLD! 
 
Colour c = RED;                          // Colour is a new first- 
                                         // class type 
 
Metal m = GOLD;                          // <= FAIL! - this is Colour’s 
                                         // GOLD, not Metal’s! 
 
int a = c;                               // OK 
c = 7;                                   // Not allowed 
 

 

Another characteristic illustrated in the above code is the need for all enumerated symbols to be 

(globally) unique. This can be both frustrating and difficult to maintain for larger systems. 

Enum classes provide strongly-typed enumerations. 

An enum class, unlike the C++98 enum does not export its enumerator names into its enclosing 

scope, meaning different enum class objects can have the same enumerator value, without causing a 

name issue. 

Also enum class values cannot be implicitly converted to integers. 

enum class Colour { RED, GOLD, GREEN, BLUE }; 
enum class Metal  { GOLD, SILVER, BRONZE }; 
 

Colour c1 = RED;                            // FAIL – RED not defined 
Colour c2 = Colour::RED;                    // OK 
 
Metal m1 = Colour::GOLD;                    // FAIL (Obviously!)  
Metal m2 = Metal::GOLD;                     // No redefinition now 
 
int a = c2;                                 // Now not allowed 
int b = static_cast<int>(c2);               // Explicit cast required.  
c = 7;                                      // Not allowed (as before) 
 

 

One of the more confusing aspects of C++98 enumerationss was their size – although the type of an 

enum was defined (int) its size was implementation defined and required only to be a type big enough 

to hold the largest enumerated value. This means that an enumeration could be 8, 16, 32 or even 64 

bits in size; and could change if new enum values were specified. This could (and probably has!) cause 
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alignment issues in embedded systems. 

We can now specify the underlying type of the enumeration (as long as it’s an integer type). The 

default is integer; as with C++98. 

enum EE : unsigned long {EE_ONE = 1, EE_TWO= 2, EE_BIG = 0xFFFFFFF0U}; 

 
If the enum class type is to be used as a forward reference you can (must) provide the underlying type 

as part of the declaration. 

// Forward declaration of enum class: 
// 
enum class Color_code : char; 
 
 
// Use of forward declaration 
// 
void foobar(const Color_code& p); 
 

// Other code… 
 
// Definition: 
// 
enum class Color_code : char { RED, YELLOW, BLUE, GREEN }; 
 

Back to Contents 
 

  



 
© Feabhas 2015   

nullptr 

What’s the value of a null pointer? 

 0 

 NULL 

 NUL 
 

No doubt you’ve been involved in the (always heated) discussions about which is the correct one (By 

the way: if you said NUL you need to take yourself to one side and give yourself a stern talking to). 

The arguments tend to go something like this: 

 0 is the only ‘well-known’ value a pointer can be set to that can be checked. 

 NULL is more explicit than just writing zero (even though it is just a macro definition wrapper) 

The problem with using 0 or NULL is that they are, in fact, integers and that can lead to unexpected 

behaviours when function overloading occurs 

void func(int i);  
void func(int* ptr); 
 
int main() 
{ 
  func(NULL);  // Which version of func() gets called? 
} 

 
 

Based on what we’ve just discussed it should be pretty straightforward to see that the int overload 

will be called. (This rather weakens the argument that NULL is more explicit –  explicitly confusing in 

this case!) 

It gets worse: Implementations are free to define NULL as any integer type they like. In a 32-bit system 

it might seem reasonable to set NULL to the same size as a pointer: 

#define NULL 0UL // 32-bit addresses 

 
Sadly, this just adds confusion to our code: 

void func(int i);  
void func(int* ptr);  
void func(long l); 
 
int main() 
{ 
  func(NULL);  // calls func(long) 
} 

 
 
In case you’re a C programmer who’s looked at this (and is feeling pretty smug at the moment) you may 

define NULL as follows: 

#define NULL (void*)0L 
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Unfortunately, this doesn’t work either, because a void* cannot be implicitly converted to an int, 

long or int* (or any other type) in C++. 

In C++11, the answer to the question of the value of a pointer is much more simple: it is always 

nullptr. 

nullptr is a keyword that represents any ‘empty’ pointer (and also any pointer-like objects; for 

example smart pointers)  A nullptr is not an integer type, or implicitly convertible to one (it’s actually 

of type nullptr_t). In our code, using nullptr instead of NULL always gives the results we expect. 

void func(int i); 
void func(int* ptr);  
void func(long l); 
 
int main() 
{ 
  func(nullptr);    // calls func(int*); 
} 
 
 

Back to Contents
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Using aliases 

In a C++ program it is common to create type aliases using typedef. A type alias is not a new type, 

simply a new name for an existing declaration. Used carefully, typedef can improve the readability 

of code – particularly when dealing with complex declarations. 

class ADT 
{ 
public: 
  void op(int); 
}; 
 
template<typename T1, typename T2>     // Template class with two  
class TC {};                           // template parameters 
 
typedef unsigned long uint32_t;        // 1 - C-style type alias 
  
typedef void (ADT::*ptr_mem_fn)(int)   // 2 - Pointer to member 
                                       //     function on class ADT 
 
typedef TC<int, int> MyTC;             // 3 - Alias for template TC, 
                                       //     specifying explicit 
                                       //     template parameters 
 

 

In C++11 typedef can be replaced with a using-alias. This performs the same function as a typedef; 

although the syntax is (arguably) more readable. A using-alias can be used wherever a typedef 

could be used. 

using uint32_t  = unsigned long;       // Same as (1) 
 
using ptr_mem_fn = void(ADT::*)(int);  // Same as (2)  
 
using MyTC = TC<int, int>;             // Same as (3) 
 

 

Using-aliases have the advantage that they can also be templates, allowing a partial substitution of 

template parameters. 

template<typename T>                   // Template alias, specifying T2 
using MyTC = TC<T, int>;               // as explicitly int. cf (3) 
 
 

Back to Contents
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Uniform initialisation syntax 

C++98 has a frustratingly large number of ways of initialising an object. 

int i ;                     // Uninitialised built-in type 
int j = 10;                 // Initialised built-in type 
int k(10);                  // Initialised built-in type 
 
int array[] = {1, 2, 3 };   // Aggregate initialisation   
char str[] = "Hello";       // String literal initialisation 
 
X x1;                       // Default constructor 
X x2(10.7);                 // Non-default constructor 
X x3 = x2;                  // Copy constructor 
X x4 = 10.7;                // Copy-constructor (with elision) 
 

 

(Note: not all these initialisations may be valid at the same time, or at all. We're interested in the 

syntax here, not the semantics of the class X). 

One of the design goals in C++11 was uniform initialisation syntax. That is, wherever possible, to use 

a consistent syntax for initialising any object. The aim was to make the language more consistent, 

therefore easier to learn (for beginners), and leading to less time spent debugging. 

To that end they added brace-initialisation to the language. 

As the name would suggest, brace-initialisation uses braces ({}) to enclose initialiser values. So 

extending the above examples: 

int i { };                  // Default initialised built-in type 
int j { 10 };               // Initialised built-in type 
 
X x1 { };                   // Default constructor 
X x2 { 10.7 };              // Non-default constructor 
X x3 { x2 };                // Copy constructor 
X x4 = { 1, 3, 5, 7 };      // Construct as aggregate type 

 
 

There are a couple of highlights from the above code. 

 Integer i is default-initialised (with the value 0). This is equivalent to C++03's (much more 

confusing): 

int i = int(); 

 
 x1 is explicitly default-constructed. This alleviates the 'classic' mistake made by almost all 

C++ programmers at some point in their career: 

X x1();      // Declares a function, x1, that takes 
             // no parameters and returns an X object 
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 Brace-initialisation also alleviates C++'s Most Vexing Parse as well. For those not familiar 

with it, here it is: 

ADT ad1( ADT() ); 

 
Most programmers read this as "create an object, adt, and initialise it with a temporary object, 

ADT()". Your compiler, however, following the C++ parsing rules, reads it as "adt is a function 

declaration for a function returning an ADT object, and taking a (pointer to) a function with 

zero parameters, returning an ADT object." Don't believe me? 

(http://en.wikipedia.org/wiki/Most_vexing_parse) 

 

With brace-initialisation, this problem goes away: 

ADT adt1 { ADT {} }; 

 
The compiler cannot parse the above except as "create an object, adt, and initialise it with a 

temporary object, ADT{}" 

 Classes may be initialised in the same way as the built-in aggregate types using a 

std::initializer_list constructor overload; which we'll cover in the next article (so don't 

worry about it for now). 

The uniform initialisation syntax goal means that brace-initialisation can be used anywhere an object 

must be initialised. This includes the member initialisation list: 

class ADT 
{ 
public: 
  ADT( double x, double y) : x_pos { x }, y_pos { y } { /* ctor body */ } 
 
private:  
  double x_pos; 
  double y_pos; 
}; 

 
 
C++11 also introduced the ability to default-initialise class members. The code: 

class ADT 
{ 
public: 
  ADT() : x_pos { 0.0 }, y_pos { 0.0 } {} 
 
private:  
  double x_pos;  
  double y_pos; 
}; 

 
 

Can be re-written as: 

http://en.wikipedia.org/wiki/Most_vexing_parse


 
© Feabhas 2015   

class ADT 
{ 
public: 
  ADT() = default;         // Tells the compiler to keep 
                           // the default ctor if other ctors 
                           // are added. 
private: 
  double x_pos { 0.0 };    // Use these values if no other  
  double y_pos { 0.0 };    // initialiser value is specified. 
}; 
 
 
int main() 
{ 
  ADT adt1 { };            // adt1.x_pos => 0.0 
                           // adt1.y_pos => 0.0 
} 
 
 

Back to Contents
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std::initializer_list 

An aggregate type in C++ is a type that can be initialised with a brace-enclosed list of initialisers. C++ 

contains three basic aggregate types, inherited from C: 

 arrays 

 structures 

 unions 

Since one of the design goals of C++ was to emulate the behaviour of built-in types it seems 

reasonable that you should be able to initialise user-defined aggregate types (containers, etc.) in the 

same way. 

class ADT { /* ... */ }; 
 
 
class Aggregate               // Acts like an array of ADT 
{ 
public:  
  Aggregate(); 
  ADT& operator[](int index);  // Allows array-like access 
 
private: 
  ADT data[16]; 
}; 
 
 
int main() 
{ 
  ADT array[16]  = { ADT{1}, ADT{2}, ADT{3} };      // OK 
  Aggregate aggr = { ADT{1}, ADT{2}, ADT{3} };   // FAIL! 
} 
 

 

A std::initializer_list is a template class that allows a user-defined type to become an aggregate 

type. 

When initialiser list syntax is used the compiler generates a std::initializer_list object 

containing the initialisation objects. A std::initializer_list is a simple container class that may be 

queried for its size; or iterated  through. 

#include <initializer_list> 
 
class Aggregate 
{ 
public: 
  Aggregate() = default;  
  Aggregate(std::initializer_list<ADT> init); 
  ADT& operator[](int index) { return data[index]; } 
 
private: 
  ADT data[16]; 
}; 
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Aggregate::Aggregate(std::initializer_list<ADT> init) 
{ 
  int index = 0;  
  std::initializer_list<ADT>::iterator it; 
 
  for(it = init.begin(); it != init.end(); ++it) 
  { 
    data[index++] = *it; 
  } 
} 
 

 

If the class contains a constructor that takes a std::initializer_list as a parameter, this 

constructor is invoked and the std::initializer_list object passed. 

int main() 
{ 
  // Creates std::initializer_list<ADT> 
  // 
  Aggregate aggr = { ADT{1}, ADT{2}, ADT{3} }; 
} 

 

There is some syntactic sugar at work here – the lack of brackets ([]) in the declaration of aggr forces 

the compiler to construct the std::initializer_list (then call aggr's constructor) rather than 

creating an array of three Aggregate objects. 

At this point we have to  insert some words of caution.  Since initialiser lists use brace-initialisation 

syntax there can be ambiguity over which constructor gets called.  To resolve this, the compiler uses 

the following rules: 

If a class has constructors overloaded for T and std::initializer_list<T> the compiler will always 

prefer the std::initializer_list overload; except in the case of an empty initialiser, where it will 

prefer the default constructor (if there is one) 

To override the compiler's brace-initialisation resolution rules you have to resort to using C++98 

parenthesis-initialisation syntax. 

class X 
{ 
public: 
  X(); 
  X(int init_val);  
  X(std::initializer_list<int> init_vals); 
}; 
 
 
int main() 
{ 
  X x1 { 10, 20 };  // Calls X::X(std::initializer_list<int>) with 2 elements 
  X x2 { 10 };      // Calls X::X(std::initializer_list<int>) with 1 element 
  X x3 ( 10 );      // Calls X::X(int) 
  X x4 { };         // Calls X::X() 
  X x5 ( );         // Function declaration! 
} 
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Initialiser lists can begin to look like so much magic and 'handwavium', so a brief look at an 

implementation of std::initializer_list is useful to dispel the mysticism: 

template <typename T>  
class initializer_list 
{ 
public: 
  initializer_list(const T* fst, const T* lst) : first{fst}, last{lst} {} 
 
  const T* begin() { return first; }  
  const T* last()  { return last;  } 
  size_t   size()  { return static_cast<size_t>(last – first); } 
 
private: 
  const T* first;  
  const T* last; 
}; 
 

 

When the compiler creates an std::initializer_list the elements of the list are constructed on the 

stack (or in static memory, depending on the scope of the initializer_list). 

 

 

 

The compiler then creates the initializer_list object that holds the address of the first element 

and one-past-the-end of the last element.  Note that the initializer_list is very small (two 

pointers) so can be passed by copy without a huge overhead; it does not pass the initialiser objects 

themselves.  Once the initializer_list has been copied  the receiver can access the elements and 

do whatever needs to be done with them. 
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Since C++11 all the STL containers support initializer_list construction; so now lists and vectors 

can be initialised in the same way as built-in arrays 

class ADT { /*... */ };  
 
int main() 
{ 
  // Push back three ADT objects 
  // 
  vector<ADT> v = { ADT{ 1 }, ADT { 2 }, ADT { 3 } }; 
  ... 

} 
 
 
Back to Contents
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Range-for loops 

If you’re using container classes in your C++ code (and you probably should be) then one of the things 

you’re going to want to do (a lot) is iterate through the container accessing each member in turn. 

Without resorting to STL algorithms we could use a for-loop to iterate through the container: 

#include <vector> 
#include <iostream> 
 
using std::vector;  
using std::cin;  
using std::cout; 
 
int main() 
{ 
  vector<int> v; int val; 
 
  // Add some data... 
  // 
  while(cin >> val) v.push_back(val); 
 
 
  for(vector<int>::iterator it = v.begin();  // Read-write iterator.  
      it != v.end();                         // Non-inclusive range. 
      ++it)                                   // Always pre-increment! 
  { 
    // Manipulate vector element... 
    // 
    cout << static_cast<char>(*it + '0'); 
  } 
} 
 

 

If the above is baffling to you there are plenty of useful little tutorials on the STL on the Internet  (For  

example:  http://cs.brown.edu/~jak/proglang/cpp/stltut/tut.html) 

We could simply the iterator declaration in C++11 using auto: 

… 
for(auto it = v.begin(); it != v.end(); ++it) 
{ 
  // Manipulate vector element... 
  // 
  cout << static_cast<char>(*it + '0'); 
 

} 
 

(See the article on auto type-deduction for details of how it works). However, there’s a nicer 

syntactic sugar to improve our code: the range-for loop: 

  

http://cs.brown.edu/~jak/proglang/cpp/stltut/tut.html


 
© Feabhas 2015   

for(auto& item : v) 
{ 
  // Manipulate vector element... 
  // 
  cout << static_cast<char>(item + '0'); 
} 

 
The semantics of the range-for are: For every element in the container, v, create a reference to 

each element in turn, item. The above code is semantically equivalent to the following: 

for (auto it_ = std::begin(v); it_ != std::end(v); ++it_) 
{ 
  auto& item = *it_; 
  cout << static_cast<char>(item +'0'); 
} 

 

Look familiar? 

Not only does this save you some typing but, because it’s the compiler that’s generating the code it 

has a lot more potential for optimisation (for example, the compiler may be able to decide that the 

end() iterator is not invalidated in the body of the range-for statement, therefore it can be read 

once before the loop; or the compiler may choose to unroll the loop; etc.) 

In case you were wondering std::begin() and std::end() are adapter functions that return an 

iterator to the first element in the supplied container and an iterator to one-past-the-end, 

respectively. For most STL containers they simply call cont.begin() and cont.end(); but the 

functions are overloaded to handle built-in arrays and other container-like objects (see below) 

Range-for loops are not limited to STL containers. They can also work with built-in arrays: 

int main() 
{ 
  int array[10];  
  int init{}; 
 
  for(auto& i : array)  // i must be a reference to 
  {                     // manipulate array elements  
    i = init++; 
  } 
  // ... 
} 
 

And also initialiser lists: 

int main() 
{ 
  for(auto i : { 1, 5, 7, 9, 11 } ) // i is a copy of each element. 
  { 
    cout << i << " "; 
  } 
} 
 

Back to Contents 
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override and final 

override specifier 
In C++98 using polymorphic types can sometimes lead to head-scratching results: 

class Base 
{ 
public: 
  virtual void op(int i); 
}; 
 
 
class Derived : public Base 
{ 
public: 
  virtual void op(long i); 
}; 
 
 
void usePolymorphicObject(Base& b) 
{ 
  p(100L);  // Calls Derived::op(), right?... 
} 
 
 

int main() 
{ 
  Derived d;  
  usePolymorphicObject(d); 
} 
 

 

On the face of it this code looks sound; indeed it will compile with no errors or warnings. However, 

when it runs the Base version of op() will be executed! 

The reason? Derived’s version of op() is not actually an override of Base::op since int and long 

are considered different types (it’s actually a conversion between an int and a long, not a 

promotion). 

The compiler is more than happy to let you overload functions in the Derived class interface; but in 

order to call the overload you would need to (dynamic) cast the Base class object in 

usePolymorphicObject(). 

In C++11 the override specifier is a compile-time check to ensure you are, in fact, overriding a base 

class method, rather than simply overloading it. 
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class Base 
{ 
public: 
  virtual void op(int i); 
}; 
 
 
class Derived : public Base 
{ 
public: 
  virtual void op(long i) override; 
}; 

 

ERROR: 'Derived::op': method with override specifier 
           'override' did not override any base class methods 
 

Final specifier 
In some cases you want to make a virtual function a ‘leaf’ function – that is, no derived class can 

override the method. The final specifier provides a compile-time check for this: 

class Base 
{ 
public: 
  virtual void op(int i); 
}; 
 
 
class Derived : public Base 
{ 
public: 
  virtual void op(int i) override final; 
}; 
 
 
class MoreDerived : public Derived 
{ 
public: 
  virtual void op(int i) override;  // <= Oops! 
}; 
 
 
ERROR:  'Derived::op': function declared as 'final'  
         cannot be overridden by 'MoreDerived::op' 
 
 

Back to Contents
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noexcept 

We have some basic problems when trying to define error management in C: 

 There is no "standard" way of reporting errors. Each company / project / programmer has a 

different approach 

 Given the basic approaches, you cannot guarantee the error will be acted upon. 

 There are difficulties with error propagation; particularly with nested calls. 

The C++ exception mechanism gives us a facility to deal with run-time errors or fault conditions that 

make further execution of a program meaningless. 

In C++98 it is possible to specify in a function declaration which exceptions a function may throw. 

class Analog 
{ 
public: 
  double get_value(void); 
  void   display(void)     throw(); 
  void   set_value(double) throw(char*, Sensor_Failed); 
 
private: 
  double value; 
}; 
 

The above function declarations state: 

 get_value() can throw any exception. This is the default. 

 display() will not throw any exceptions. 

 set_value() can throw exceptions of only of type char* and Sensor_Failed; it cannot throw 

exceptions of any other type. 

This looks wonderful, but compilers (can) only partially check exception specifications at compile-time 

for compliancy. 

extern void process(void);                 // May throw ANY exception  
void check(void) throw(std::out_of_range); // May throw only 
                                           // std::out_of_range 
 
 
void check(void) throw(std::out_of_range) 
{ 
  process();                               // compiler does not check if 
                                           // process(), or one of its 
                                           // subordinates, only throws 
                                           // std::out_of_range! 
} 
 

If process() throws an exception of any type other than std::out_of_range this will cause the 

exception handling mechanism – at run-time – to call the function std::unexpected() which, by 

default, calls std::terminate() (although its behaviour can – and probably should -  be replaced). 

Because of the limitations of compile-time checking, for C++11 the exception specification was 

simplified to two cases: 
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• A function may propagate any exception; as before, the default case 

• A function may not throw any exceptions. 

 
Marking a function as throwing no exceptions is done with the exception specifier, noexcept. 

(If you read the noexcept documentation you'll see it can take a boolean constant-expression 

parameter. This parameter allows (for example) template code to conditionally restrict the exception 

signature of a function based on the properties of its parameter type. noexcept on its own is equivalent 

to noexcept(true). The use of this mechanism is beyond the scope of this article.) 

 
void mightThrow();               // Could throw any exception  
void doesNotThrow() noexcept;    // Does not throw any exception 
 

 
On the face of it, the following function specifications look semantically identical – both state that the 

function will not throw any exceptions: 

void old_style() throw(); 

void new_style() noexcept; 
 
The difference is in the run-time behaviour and its consequences for optimisation. With the throw() 

specification, if the function (or one of its subordinates) throws an exception, the exception handling 

mechanism must unwind the stack looking for a 'propagation barrier' – a (set of) catch clauses. Here, 

the exception specification is checked and, if the exception being thrown doesn't match the provided 

specification, std::unexpected() is called. 

However, std::unexpected() can itself throw an exception. If the exception thrown by 

std::enexpected() is valid for the current exception specification, exception propagation and stack 

unwinding continues as before. 

This means that there is little opportunity for optimisation by the compiler for code using  a throw() 

specification.  In contrast, in the case of a noexcept function specification std::terminate() is 

called immediately, rather than std::unexpected(). Because of this, the compiler has the 

opportunity to not have to unwind the stack during an exception, allowing it a much wider range of 

optimisations. 

In general, then, if you know your function will never throw an exception, prefer to specify it as 

noexcept, rather than throw(). 

 
Back to Contents
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std::array 

C++98 inherited C's only built-in container, the array. Arrays of non-class types behave in exactly the 

same way as they do in C. For class types, when an array is constructed the default constructor is 

called on each element in the array. 

class Position 
{ 
public: 
  Position = default; 
  Position(double lon, double lat); 
 
private: 
  double longitude { 0.0 };  
  double latitude  { 0.0 }; 
}; 
 
 
int main() 
{ 
  Position track[5];  // Default constructor is called for each element 
} 
 

 

Explicitly initialising objects in an array is one of the few times you can explicitly call a class’ 

constructor. 

int main() 
{ 
  Position track[5] = 
  { 
    Position { 0.0,   0.0  }, 
    Position { 90.0,  45.0 }, 
    Position { 180.0, 90.0 } 
  }; 
} 
 

 

For track[], the non-default constructor is called for first three elements, followed by the default 

(no parameter) constructor for the last two elements; hence they are 0.0. 

(Note the performance implications of this – five constructor calls will be made whether you explicitly 

initialise the objects or not.) 

Arrays are referred to as ‘degenerate’ containers. They are basically a contiguous sequence of 

memory, pointers, and some syntactic sugar. This can lead to some self-delusion on the part of the 

programmer. 
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#define array_sizeof(a) (sizeof(a) / sizeof(a[0])) 
 
 
void process(Position track[5]) 
{ 
  size_t sz = array_sizeof(track);  // Probably 0!  
  track++;                          // <= Compiles! Eh?! 
} 
 
 

int main() 
{ 
  Position track[5]; 
  size_t sz = array_sizeof(track);  // Yields 5, as expected  

  track++;                          // FAIL – as expected 
} 
 

 

Despite the fact that the declaration of process() appears to specify an array of five Position 

objects, it is in fact a simple Position* that is passed. This explains why the array_sizeof macro 

fails (since the size of a Position is greater than the size of a pointer!). It also explains why we can 

increment the array name (which should be a constant) – as it is in  main()). 

In C++11, use of ‘raw’ arrays is undesirable; and there are more effective alternatives. 

std::array is fixed-size contiguous container.  The class is a template with two parameters – the type 

held in the container; and the size. 

#include <array> 
 
int main() 
{ 
  std::array<Position, 10> track;  // Default ctor called on all 
                                   // 10 Position objects 
 
  cout << a[5]  << endl;           // No bounds-checking  
  cout << a.at(5) << endl;         // Bounds-checked access 
} 

 
 

std::array does not perform any dynamic memory allocation. Basically, it is a thin wrapper around 

C-style arrays. Memory is allocated – as with built-in arrays – on the stack or in static memory. Because 

of this, and unlike std::vector, std::arrays cannot be resized. 

If C-style notation is used there is no bounds-checking on the std::array; however, if the at() 

function is used an exception (std::out_of_range) will be thrown if an attempt is made to access 

outside the range of the array. 
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std::arrays have the advantage (over the built-in array) that they support all the facilities required 

by the STL algorithms so they can be used wherever a vector or list (etc.) could be used; without 

the overhead of dynamic memory management. 

int main() 
{ 
  std::array<Position, 10> track =   // Note: 
  {                                  // NOT using std::initializer_list!  
     Position {   0.0,  0.0 },       // The internal 'raw' array is being  
     Position {  90.0, 45.0 },        // initialised here (exactly as above) 
     Position { 180.0, 90.0 } 
  }; 
 
  for(auto& pos : track) 
  { 
    cout << pos.asString() << endl; 
  } 
} 

 

Finally, because container types are classes (not syntactic sugar) they can be passed around the 

system like any other object. 

void process(std::array<Position, 10>& track) 
{ 
  cout << "Processing " << track.size() << " elements" << endl; 
 
  for(auto& pos : track) 
  { 
    cout << pos.asString() << endl; 
  } 
 

} 
 
 
int main() 
{ 
  std::array<Position, 10> track; 
 

  process(track);  // Pass just as with any other object. 
} 
 
 

Back to Contents
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Smart pointers 

The dynamic creation and destruction of objects was always one of the bugbears of C. It required the 

programmer to (manually) control the allocation of memory for the object, handle the object’s 

initialisation then ensure that the object was safely cleaned-up after use and its memory returned to 

the heap. Because many C programmers weren’t educated in the potential problems (or were just 

plain lazy or delinquent in their programming) C got a reputation in some quarters for being an unsafe, 

memory-leaking language. 

Things didn’t significantly improve in C++. We replaced malloc and free with new and delete; but the 

memory management issue remained. 

class X { /* ... */ };  
 
void func(X* theX) 
{ 
  theX = new X; 
} 
 
 

int main() 
{ 
  X *px = new X; 
  func(px);       // Oops! Memory leak!  
 
  delete px; 
} 

 

I concede – the code above is trivial and stupid but I suspect if I looked around I could find similar (or 

even worse!) examples in actual production code. 

Languages such as Java and C# solved this problem by taking memory management out of the hands of 

the programmer and using a garbage collector mechanism to ensure memory is cleaned up when not 

in use. 

In Modern C++ they have chosen not to go down this route but make use of C++'s Resource Acquisition 

Is Initialisation (RAII) mechanism and encapsulate dynamic object creation / destruction within  smart 

pointers. 

A smart pointer is basically a class that has the API of a 'raw' pointer. In Modern C++ we have four 

classes for dynamic object management: 

std::auto_ptr 

Single-owner managed pointer, from C++98; now deprecated 

std::shared_ptr 

A reference-counted pointer, introduced in C++98 TR1 

std::unique_ptr 

Single-owner managed pointer which replaces (the now deprecated) auto_ptr  

std::weak_ptr 

Works with shared_ptr in situations where circular references could be a problem 
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Avoid using std::auto_ptr 
std::auto_ptr was introduced in C++98 as a single-owner resource-managed smart pointer.  That is, 

only one auto_ptr can ever be pointing at the resource. 

auto_ptr objects have the peculiarity of taking ownership of the pointers assigned to them: An 

auto_ptr object that has ownership over one element is in charge of destroying the element it points 

to and to deallocate the memory allocated to it when itself is destroyed.  The destructor does this by 

calling operator delete automatically. 

#include <memory> 
 
class X 
{ 
  public: void op(); 
}; 
 
int main() 
{ 
  std::auto_ptr<X> p1{new X};  
  std::auto_ptr<X> p2{new X}; 
 
  p1->op(); 
  p1 = p2;    // Take ownership, rather than copy. 
 

  p2->op();   // What happens here?! 
} 
 

 

When an assignment operation takes place between two auto_ptr objects, ownership is transferred, 

which means that the object losing ownership is set to no longer point to the element (it is set to  

nullptr). 

This could lead to unexpected null pointer dereferences - an unacceptable consequence for most (if 

not all) systems. Therefore, we recommend avoiding the use of auto_ptr. It has now been deprecated 

in C++11 (and replaced with the much more consistent std::unique_ptr) 

Use std::unique_ptr for single ownership 
std::unique_ptr allows single ownership of a resource. A std::unique_ptr is an RAII wrapper 

around a 'raw' pointer, therefore occupies no more memory (and is generally almost as fast) as using a 

raw pointer. Unless you need more complex semantics, unique_ptr is your go-to smart pointer. 

unique_ptr does not allow copying (by definition); but it does support move semantics, so you can 

explicitly transfer ownership of the resource to another unique_ptr. 
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using namespace std; 
 
int main() 
{ 
  unique_ptr<X> p1{ new X };     // NB: You can't do: 
                                 // std::unique_ptr<X> p1 = new X; 
 
  auto p2 = make_unique<X>();    // Preferred mechanism for dynamic 
                                 // objects. 
 
  p1->op(); 
 
  unique_ptr<X> p3{ p1 };        // ERROR - Copy construction  
  unique_ptr<X> p4{ move(p1) };  // OK - move constructor called 
 

  p1 = p2;                       // ERROR – Can't copy. 
  p1 = move(p2);                 // p1 => p2 
                                 // p2 => nullptr 
} 
 

 

The utility function make_unique<T>() hides away the memory allocation and is the preferred 

mechanism for dynamically creating objects. make_unique<T>() is not officially supported in C++11; 

but it is part of C++14 and is supported by many C++11-compliant compilers.  (Its omission appears to 

have been a mistake in the C++11 standard.) 

For sharing a resource, use std::shared_ptr 
std::shared_ptr is a reference-counted smart pointer. 

Creating a new dynamic object also creates a new associated management structure that holds 

(amongst other things) a reference count of the number of shared_ptrs currently 'pointing' at the 

object. 

Each time a shared_ptr is copied the reference count is incremented. Each time one of the pointers 

goes out of scope the reference count on the resource is decremented. When the reference count is 

zero (that is, the last shared_ptr referencing the resource goes out of scope) the resource is deleted. 

std::shared_ptrs have a higher overhead (in memory and code) than std::unique_ptr but they 

come with more sophisticated behaviours (like the ability to be copied). 

 
void func(std::shared_ptr<X> p)  // Pass-by-value; copy made on call 
{                                // ref count incremented 
  p->op(); 
}                                // parameter object deleted; 
                                 // ref count decremented 
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int main() 
{ 
  auto ptr = std::make_shared<X>(100); // Creates a new shared_ptr<X>. 
 
  ptr -> op(); 
  func(ptr);                           // Copy ptr; increment ref count. 
                                       // Last shared_ptr goes out of 
}                                      // scope; delete memory. 
 

Once again, the standard library provides a utility function make_shared<T>() for creating shared 

dynamic objects; and, once again, this is the preferred  mechanism. 

Avoid circular dependencies with std::weak_ptr 
A std::weak_ptr is related to a std::shared_ptr. Think of a weak_ptr as a 'placeholder' for a 

shared_ptr. std::weak_ptrs are useful if you need to break cyclic dependencies between 

shared_ptrs (A topic that is outside the scope of this article) 

When you create a weak_ptr it must be constructed with an extant shared_ptr. It then becomes a 

'placeholder' for that shared_ptr. You can store weak_ptrs, copy and move them, but doing so has 

no effect the reference count on the  resource. 

void func(std::weak_ptr<int> p);          // Note p is pass-by-value.  
 
int main() 
{ 
  auto shared = std::make_shared<int>(100);  // shared ctor: count = 1 
  std::weak_ptr<int> weak{shared};           // weak ctor:   count = 1 
 
  *weak = 200;                               // ERROR! 
 
  func(weak);                             // weak copy:   count = 1 
}                                            // weak dtor:   count = 1 
                                             // shared dtor: count = 0 
 

Notice you cannot directly use a weak_ptr. You must convert it back to a shared_ptr first.  

weak_ptrs have a method, lock(), that creates (in effect) a copy of the original shared_ptr, which 

can then be accessed. 

void func(std::weak_ptr<int> p)              // p:                 count = 1 
{ 
  if(!p.expired())                           // Is p valid? 
  { 
    auto temp = p.lock();                    // Return shared_ptr: count = 2 
    *temp = 200;= 
  }                                          // temp dtor:         count = 1 
}                                            // p dtor:            count = 1 
 

Since weak_ptrs can have a different lifetime to their associated shared_ptr there is a chance the 

original shared_ptr could go out of scope (and delete its resource) before the weak_ptr is destroyed. 

A weak_ptr can therefore be invalid - that is, referencing a resource that is no longer viable. You 

should use the expired() method on the weak_ptr to see if it is still valid, before attempting to 

access it; alternatively, calling lock() on an expired weak_ptr will return nullptr if it has expired. 

Back to Contents 
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